| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDJOIN5 | |||
| Description: ( ( 1 ∧ 2 ∧ 3 ∧ 4 ) ∧ 5 ) ⇒ ( 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ). |
| Ref | Expression |
|---|---|
| rcp-NDJOIN5.1 | ⊢ (((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) ∧ 𝛾₅) → 𝜑) |
| Ref | Expression |
|---|---|
| rcp-NDJOIN5 | ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDJOIN5.1 | . 2 ⊢ (((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) ∧ 𝛾₅) → 𝜑) | |
| 2 | df-rcp-AND5 165 | . . . . 5 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) ↔ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) ∧ 𝛾₅)) | |
| 3 | 2 | bisym-P2.6b.SH 125 | . . . 4 ⊢ (((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) ∧ 𝛾₅) ↔ (𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅)) |
| 4 | 3 | subiml-P2.8a.SH 129 | . . 3 ⊢ ((((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) ∧ 𝛾₅) → 𝜑) ↔ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → 𝜑)) |
| 5 | 4 | bifwd-P2.5a.SH 112 | . 2 ⊢ ((((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) ∧ 𝛾₅) → 𝜑) → ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → 𝜑)) |
| 6 | 1, 5 | ax-MP 14 | 1 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 ∧ wff-rcp-AND4 162 ∧ wff-rcp-AND5 164 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-rcp-AND5 165 |
| This theorem is referenced by: rcp-NDASM1of5 202 rcp-NDASM2of5 203 rcp-NDASM3of5 204 rcp-NDASM4of5 205 rcp-NDASM5of5 206 rcp-NDIMP4add1 211 rcp-IMPIME4 530 |
| Copyright terms: Public domain | W3C validator |