PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bisym-P2.6b

Theorem bisym-P2.6b 124
Description: Equivalence Property: '' Symmetry.
Assertion
Ref Expression
bisym-P2.6b ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem bisym-P2.6b
StepHypRef Expression
1 birev-P2.5b 115 . 2 ((𝜑𝜓) → (𝜓𝜑))
2 bifwd-P2.5a 111 . 2 ((𝜑𝜓) → (𝜑𝜓))
31, 2bicmb-P2.5c.AC.2SH 121 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  bisym-P2.6b.SH  125
  Copyright terms: Public domain W3C validator