| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDASM4of4 | |||
| Description: ( 1 ∧ 2 ∧ 3 ∧ 4 ) → 4. † |
| Ref | Expression |
|---|---|
| rcp-NDASM4of4 | ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝛾₄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndasm-P3.1 166 | . 2 ⊢ (((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) ∧ 𝛾₄) → 𝛾₄) | |
| 2 | 1 | rcp-NDJOIN4 190 | 1 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝛾₄) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-rcp-AND3 160 ∧ wff-rcp-AND4 162 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-rcp-AND4 163 |
| This theorem is referenced by: rcp-NDASM4of5 205 ndore-P3.12.CL 247 example-E3.2b 312 oroverand-P4.27-L4 463 |
| Copyright terms: Public domain | W3C validator |