PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndasm-P3.1

Theorem ndasm-P3.1 166
Description: Natural Deduction: State Assumption.

This rule is simply stating an assumption.

Assertion
Ref Expression
ndasm-P3.1 ((𝛾𝜑) → 𝜑)

Proof of Theorem ndasm-P3.1
StepHypRef Expression
1 simpr-P2.9b 136 1 ((𝛾𝜑) → 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  ndfalsei-P3.19  184  rcp-NDASM1of1  192  rcp-NDASM2of2  194  rcp-NDASM3of3  197  rcp-NDASM4of4  201  rcp-NDASM5of5  206
  Copyright terms: Public domain W3C validator