PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  oroverand-P4.27-L4

Theorem oroverand-P4.27-L4 463
Description: Lemma for oroverand-P4.27b 464.
Assertion
Ref Expression
oroverand-P4.27-L4 (((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑 ∨ (𝜓𝜒)))

Proof of Theorem oroverand-P4.27-L4
StepHypRef Expression
1 rcp-NDASM3of3 197 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒) ∧ 𝜑) → 𝜑)
21ndorir-P3.11 176 . 2 (((𝜑𝜓) ∧ (𝜑𝜒) ∧ 𝜑) → (𝜑 ∨ (𝜓𝜒)))
3 rcp-NDASM4of4 201 . . . 4 (((𝜑𝜓) ∧ (𝜑𝜒) ∧ 𝜓𝜑) → 𝜑)
43ndorir-P3.11 176 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒) ∧ 𝜓𝜑) → (𝜑 ∨ (𝜓𝜒)))
5 rcp-NDASM3of4 200 . . . . 5 (((𝜑𝜓) ∧ (𝜑𝜒) ∧ 𝜓𝜒) → 𝜓)
6 rcp-NDASM4of4 201 . . . . 5 (((𝜑𝜓) ∧ (𝜑𝜒) ∧ 𝜓𝜒) → 𝜒)
75, 6ndandi-P3.7 172 . . . 4 (((𝜑𝜓) ∧ (𝜑𝜒) ∧ 𝜓𝜒) → (𝜓𝜒))
87ndoril-P3.10 175 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒) ∧ 𝜓𝜒) → (𝜑 ∨ (𝜓𝜒)))
9 rcp-NDASM2of3 196 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒) ∧ 𝜓) → (𝜑𝜒))
104, 8, 9rcp-NDORE4 237 . 2 (((𝜑𝜓) ∧ (𝜑𝜒) ∧ 𝜓) → (𝜑 ∨ (𝜓𝜒)))
11 rcp-NDASM1of2 193 . 2 (((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑𝜓))
122, 10, 11rcp-NDORE3 236 1 (((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑 ∨ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144  wff-rcp-AND3 160  wff-rcp-AND4 162
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-rcp-AND4 163
This theorem is referenced by:  oroverand-P4.27b  464
  Copyright terms: Public domain W3C validator