Proof of Theorem oroverand-P4.27-L3
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM2of2 194 |
. . . 4
⊢ (((𝜑 ∨ (𝜓 ∧
𝜒)) ∧ 𝜑)
→ 𝜑) |
| 2 | 1 | ndorir-P3.11 176 |
. . 3
⊢ (((𝜑 ∨ (𝜓 ∧
𝜒)) ∧ 𝜑)
→ (𝜑 ∨ 𝜓)) |
| 3 | 1 | ndorir-P3.11 176 |
. . 3
⊢ (((𝜑 ∨ (𝜓 ∧
𝜒)) ∧ 𝜑)
→ (𝜑 ∨ 𝜒)) |
| 4 | 2, 3 | ndandi-P3.7 172 |
. 2
⊢ (((𝜑 ∨ (𝜓 ∧
𝜒)) ∧ 𝜑)
→ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨
𝜒))) |
| 5 | | rcp-NDASM2of2 194 |
. . . . 5
⊢ (((𝜑 ∨ (𝜓 ∧
𝜒)) ∧ (𝜓
∧ 𝜒)) → (𝜓 ∧ 𝜒)) |
| 6 | 5 | ndander-P3.9 174 |
. . . 4
⊢ (((𝜑 ∨ (𝜓 ∧
𝜒)) ∧ (𝜓
∧ 𝜒)) → 𝜓) |
| 7 | 6 | ndoril-P3.10 175 |
. . 3
⊢ (((𝜑 ∨ (𝜓 ∧
𝜒)) ∧ (𝜓
∧ 𝜒)) → (𝜑 ∨ 𝜓)) |
| 8 | 5 | ndandel-P3.8 173 |
. . . 4
⊢ (((𝜑 ∨ (𝜓 ∧
𝜒)) ∧ (𝜓
∧ 𝜒)) → 𝜒) |
| 9 | 8 | ndoril-P3.10 175 |
. . 3
⊢ (((𝜑 ∨ (𝜓 ∧
𝜒)) ∧ (𝜓
∧ 𝜒)) → (𝜑 ∨ 𝜒)) |
| 10 | 7, 9 | ndandi-P3.7 172 |
. 2
⊢ (((𝜑 ∨ (𝜓 ∧
𝜒)) ∧ (𝜓
∧ 𝜒)) → ((𝜑 ∨ 𝜓) ∧
(𝜑 ∨ 𝜒))) |
| 11 | | rcp-NDASM1of1 192 |
. 2
⊢ ((𝜑 ∨ (𝜓 ∧
𝜒)) → (𝜑
∨ (𝜓 ∧ 𝜒))) |
| 12 | 4, 10, 11 | rcp-NDORE2 235 |
1
⊢ ((𝜑 ∨ (𝜓 ∧
𝜒)) → ((𝜑
∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) |