PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  oroverand-P4.27-L3

Theorem oroverand-P4.27-L3 462
Description: Lemma for oroverand-P4.27b 464.
Assertion
Ref Expression
oroverand-P4.27-L3 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) ∧ (𝜑𝜒)))

Proof of Theorem oroverand-P4.27-L3
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . 4 (((𝜑 ∨ (𝜓𝜒)) ∧ 𝜑) → 𝜑)
21ndorir-P3.11 176 . . 3 (((𝜑 ∨ (𝜓𝜒)) ∧ 𝜑) → (𝜑𝜓))
31ndorir-P3.11 176 . . 3 (((𝜑 ∨ (𝜓𝜒)) ∧ 𝜑) → (𝜑𝜒))
42, 3ndandi-P3.7 172 . 2 (((𝜑 ∨ (𝜓𝜒)) ∧ 𝜑) → ((𝜑𝜓) ∧ (𝜑𝜒)))
5 rcp-NDASM2of2 194 . . . . 5 (((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒)) → (𝜓𝜒))
65ndander-P3.9 174 . . . 4 (((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒)) → 𝜓)
76ndoril-P3.10 175 . . 3 (((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒)) → (𝜑𝜓))
85ndandel-P3.8 173 . . . 4 (((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒)) → 𝜒)
98ndoril-P3.10 175 . . 3 (((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒)) → (𝜑𝜒))
107, 9ndandi-P3.7 172 . 2 (((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒)) → ((𝜑𝜓) ∧ (𝜑𝜒)))
11 rcp-NDASM1of1 192 . 2 ((𝜑 ∨ (𝜓𝜒)) → (𝜑 ∨ (𝜓𝜒)))
124, 10, 11rcp-NDORE2 235 1 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) ∧ (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  oroverand-P4.27b  464
  Copyright terms: Public domain W3C validator