| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > oroverand-P4.27b | |||
| Description: '∨' Distributes Over '∧'. † |
| Ref | Expression |
|---|---|
| oroverand-P4.27b | ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oroverand-P4.27-L3 462 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) → ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) | |
| 2 | oroverand-P4.27-L4 463 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | rcp-NDBII0 239 | 1 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ∧ wff-and 132 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-rcp-AND4 163 |
| This theorem is referenced by: oroverbi-P4.28-L3 468 |
| Copyright terms: Public domain | W3C validator |