PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  oroverand-P4.27b

Theorem oroverand-P4.27b 464
Description: '' Distributes Over ''.
Assertion
Ref Expression
oroverand-P4.27b ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))

Proof of Theorem oroverand-P4.27b
StepHypRef Expression
1 oroverand-P4.27-L3 462 . 2 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) ∧ (𝜑𝜒)))
2 oroverand-P4.27-L4 463 . 2 (((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑 ∨ (𝜓𝜒)))
31, 2rcp-NDBII0 239 1 ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-rcp-AND4 163
This theorem is referenced by:  oroverbi-P4.28-L3  468
  Copyright terms: Public domain W3C validator