| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > oroverbi-P4.28-L3 | |||
| Description: Lemma for oroverbi-P4.28b 469 and oroverbiint-P4.28d 471. † |
| Ref | Expression |
|---|---|
| oroverbi-P4.28-L3 | ⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∨ (𝜓 → 𝜒)) ∧ (𝜑 ∨ (𝜒 → 𝜓)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi-P3.47 358 | . . 3 ⊢ ((𝜓 ↔ 𝜒) ↔ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) | |
| 2 | 1 | suborr-P3.43b.RC 349 | . 2 ⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ (𝜑 ∨ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓)))) |
| 3 | oroverand-P4.27b 464 | . 2 ⊢ ((𝜑 ∨ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) ↔ ((𝜑 ∨ (𝜓 → 𝜒)) ∧ (𝜑 ∨ (𝜒 → 𝜓)))) | |
| 4 | 2, 3 | bitrns-P3.33c.RC 303 | 1 ⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∨ (𝜓 → 𝜒)) ∧ (𝜑 ∨ (𝜒 → 𝜓)))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 ∧ wff-and 132 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-rcp-AND4 163 |
| This theorem is referenced by: oroverbi-P4.28b 469 oroverbiint-P4.28d 471 |
| Copyright terms: Public domain | W3C validator |