PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  oroverbi-P4.28b

Theorem oroverbi-P4.28b 469
Description: '' Distributes Over ''.
Assertion
Ref Expression
oroverbi-P4.28b ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ↔ (𝜑𝜒)))

Proof of Theorem oroverbi-P4.28b
StepHypRef Expression
1 oroverbi-P4.28-L3 468 . 2 ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑 ∨ (𝜓𝜒)) ∧ (𝜑 ∨ (𝜒𝜓))))
2 oroverim-P4.28a 467 . . 3 ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒)))
3 oroverim-P4.28a 467 . . 3 ((𝜑 ∨ (𝜒𝜓)) ↔ ((𝜑𝜒) → (𝜑𝜓)))
42, 3subandd-P3.42c.RC 344 . 2 (((𝜑 ∨ (𝜓𝜒)) ∧ (𝜑 ∨ (𝜒𝜓))) ↔ (((𝜑𝜓) → (𝜑𝜒)) ∧ ((𝜑𝜒) → (𝜑𝜓))))
5 dfbi-P3.47 358 . . 3 (((𝜑𝜓) ↔ (𝜑𝜒)) ↔ (((𝜑𝜓) → (𝜑𝜒)) ∧ ((𝜑𝜒) → (𝜑𝜓))))
65bisym-P3.33b.RC 299 . 2 ((((𝜑𝜓) → (𝜑𝜒)) ∧ ((𝜑𝜒) → (𝜑𝜓))) ↔ ((𝜑𝜓) ↔ (𝜑𝜒)))
71, 4, 6dbitrns-P4.16.RC 429 1 ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ↔ (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-rcp-AND4 163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator