Proof of Theorem oroverbi-P4.28b
| Step | Hyp | Ref
| Expression |
| 1 | | oroverbi-P4.28-L3 468 |
. 2
⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∨
(𝜓 → 𝜒))
∧ (𝜑 ∨ (𝜒 → 𝜓)))) |
| 2 | | oroverim-P4.28a 467 |
. . 3
⊢ ((𝜑 ∨ (𝜓 → 𝜒)) ↔ ((𝜑 ∨
𝜓) → (𝜑
∨ 𝜒))) |
| 3 | | oroverim-P4.28a 467 |
. . 3
⊢ ((𝜑 ∨ (𝜒 → 𝜓)) ↔ ((𝜑 ∨
𝜒) → (𝜑
∨ 𝜓))) |
| 4 | 2, 3 | subandd-P3.42c.RC 344 |
. 2
⊢ (((𝜑 ∨ (𝜓 → 𝜒)) ∧ (𝜑 ∨
(𝜒 → 𝜓)))
↔ (((𝜑 ∨ 𝜓) → (𝜑 ∨
𝜒)) ∧ ((𝜑
∨ 𝜒) → (𝜑 ∨ 𝜓)))) |
| 5 | | dfbi-P3.47 358 |
. . 3
⊢ (((𝜑 ∨ 𝜓) ↔
(𝜑 ∨ 𝜒))
↔ (((𝜑 ∨ 𝜓) → (𝜑 ∨
𝜒)) ∧ ((𝜑
∨ 𝜒) → (𝜑 ∨ 𝜓)))) |
| 6 | 5 | bisym-P3.33b.RC 299 |
. 2
⊢ ((((𝜑 ∨ 𝜓) →
(𝜑 ∨ 𝜒))
∧ ((𝜑 ∨ 𝜒) → (𝜑 ∨
𝜓))) ↔ ((𝜑
∨ 𝜓) ↔ (𝜑 ∨ 𝜒))) |
| 7 | 1, 4, 6 | dbitrns-P4.16.RC 429 |
1
⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∨
𝜓) ↔ (𝜑
∨ 𝜒))) |