PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDASM2of4

Theorem rcp-NDASM2of4 199
Description: ( 1 2 3 4 ) 2.
Assertion
Ref Expression
rcp-NDASM2of4 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝛾₂)

Proof of Theorem rcp-NDASM2of4
StepHypRef Expression
1 rcp-NDASM2of3 196 . . 3 ((𝛾₁𝛾₂𝛾₃) → 𝛾₂)
21ndimp-P3.2 167 . 2 (((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄) → 𝛾₂)
32rcp-NDJOIN4 190 1 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝛾₂)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-rcp-AND3 160  wff-rcp-AND4 162
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161  df-rcp-AND4 163
This theorem is referenced by:  rcp-NDASM2of5  203  ndore-P3.12.CL  247
  Copyright terms: Public domain W3C validator