PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imcomm-P3.27

Theorem imcomm-P3.27 265
Description: Commutation of Antecedents.
Hypothesis
Ref Expression
imcomm-P3.27.1 (𝛾 → (𝜑 → (𝜓𝜒)))
Assertion
Ref Expression
imcomm-P3.27 (𝛾 → (𝜓 → (𝜑𝜒)))

Proof of Theorem imcomm-P3.27
StepHypRef Expression
1 rcp-NDASM2of3 196 . . . 4 ((𝛾𝜓𝜑) → 𝜓)
2 rcp-NDASM3of3 197 . . . . 5 ((𝛾𝜓𝜑) → 𝜑)
3 imcomm-P3.27.1 . . . . . 6 (𝛾 → (𝜑 → (𝜓𝜒)))
43rcp-NDIMP1add2 212 . . . . 5 ((𝛾𝜓𝜑) → (𝜑 → (𝜓𝜒)))
52, 4ndime-P3.6 171 . . . 4 ((𝛾𝜓𝜑) → (𝜓𝜒))
61, 5ndime-P3.6 171 . . 3 ((𝛾𝜓𝜑) → 𝜒)
76rcp-NDIMI3 225 . 2 ((𝛾𝜓) → (𝜑𝜒))
87rcp-NDIMI2 224 1 (𝛾 → (𝜓 → (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161
This theorem is referenced by:  imcomm-P3.27.RC  266  imoverim-P4.30-L1  476
  Copyright terms: Public domain W3C validator