PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imoverim-P4.30-L1

Theorem imoverim-P4.30-L1 476
Description: Lemma for imoverim-P4.30a .
Assertion
Ref Expression
imoverim-P4.30-L1 (((𝜑𝜓) → (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))

Proof of Theorem imoverim-P4.30-L1
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . . 5 ((((𝜑𝜓) → (𝜑𝜒)) ∧ 𝜓) → 𝜓)
21axL1-P3.21 252 . . . 4 ((((𝜑𝜓) → (𝜑𝜒)) ∧ 𝜓) → (𝜑𝜓))
3 rcp-NDASM1of2 193 . . . 4 ((((𝜑𝜓) → (𝜑𝜒)) ∧ 𝜓) → ((𝜑𝜓) → (𝜑𝜒)))
42, 3ndime-P3.6 171 . . 3 ((((𝜑𝜓) → (𝜑𝜒)) ∧ 𝜓) → (𝜑𝜒))
54rcp-NDIMI2 224 . 2 (((𝜑𝜓) → (𝜑𝜒)) → (𝜓 → (𝜑𝜒)))
65imcomm-P3.27 265 1 (((𝜑𝜓) → (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  imoverim-P4.30a  477
  Copyright terms: Public domain W3C validator