| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > imoverim-P4.30-L1 | |||
| Description: Lemma for imoverim-P4.30a . † |
| Ref | Expression |
|---|---|
| imoverim-P4.30-L1 | ⊢ (((𝜑 → 𝜓) → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . . . . 5 ⊢ ((((𝜑 → 𝜓) → (𝜑 → 𝜒)) ∧ 𝜓) → 𝜓) | |
| 2 | 1 | axL1-P3.21 252 | . . . 4 ⊢ ((((𝜑 → 𝜓) → (𝜑 → 𝜒)) ∧ 𝜓) → (𝜑 → 𝜓)) |
| 3 | rcp-NDASM1of2 193 | . . . 4 ⊢ ((((𝜑 → 𝜓) → (𝜑 → 𝜒)) ∧ 𝜓) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
| 4 | 2, 3 | ndime-P3.6 171 | . . 3 ⊢ ((((𝜑 → 𝜓) → (𝜑 → 𝜒)) ∧ 𝜓) → (𝜑 → 𝜒)) |
| 5 | 4 | rcp-NDIMI2 224 | . 2 ⊢ (((𝜑 → 𝜓) → (𝜑 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) |
| 6 | 5 | imcomm-P3.27 265 | 1 ⊢ (((𝜑 → 𝜓) → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: imoverim-P4.30a 477 |
| Copyright terms: Public domain | W3C validator |