Proof of Theorem joinimandinc-P4.8a
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM3of3 197 |
. . . . 5
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜑)
→ 𝜑) |
| 2 | | joinimandinc-P4.8a.1 |
. . . . . . 7
⊢ (𝛾 → ((𝜑 →
𝜓) ∧ (𝜒
→ 𝜗))) |
| 3 | 2 | rcp-NDIMP1add2 212 |
. . . . . 6
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜑)
→ ((𝜑 → 𝜓) ∧ (𝜒 →
𝜗))) |
| 4 | 3 | ndander-P3.9 174 |
. . . . 5
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜑)
→ (𝜑 → 𝜓)) |
| 5 | 1, 4 | ndime-P3.6 171 |
. . . 4
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜑)
→ 𝜓) |
| 6 | 5 | ndorir-P3.11 176 |
. . 3
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜑)
→ (𝜓 ∨ 𝜗)) |
| 7 | | rcp-NDASM3of3 197 |
. . . . 5
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜒)
→ 𝜒) |
| 8 | 2 | rcp-NDIMP1add2 212 |
. . . . . 6
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜒)
→ ((𝜑 → 𝜓) ∧ (𝜒 →
𝜗))) |
| 9 | 8 | ndandel-P3.8 173 |
. . . . 5
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜒)
→ (𝜒 → 𝜗)) |
| 10 | 7, 9 | ndime-P3.6 171 |
. . . 4
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜒)
→ 𝜗) |
| 11 | 10 | ndoril-P3.10 175 |
. . 3
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒) ∧ 𝜒)
→ (𝜓 ∨ 𝜗)) |
| 12 | | rcp-NDASM2of2 194 |
. . 3
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒)) → (𝜑
∨ 𝜒)) |
| 13 | 6, 11, 12 | rcp-NDORE3 236 |
. 2
⊢ ((𝛾 ∧ (𝜑 ∨
𝜒)) → (𝜓
∨ 𝜗)) |
| 14 | 13 | rcp-NDIMI2 224 |
1
⊢ (𝛾 → ((𝜑 ∨
𝜒) → (𝜓
∨ 𝜗))) |