PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  joinimandinc-P4.8a

Theorem joinimandinc-P4.8a 397
Description: Join Two Implications Through Conjunction (Inclusive).
Hypothesis
Ref Expression
joinimandinc-P4.8a.1 (𝛾 → ((𝜑𝜓) ∧ (𝜒𝜗)))
Assertion
Ref Expression
joinimandinc-P4.8a (𝛾 → ((𝜑𝜒) → (𝜓𝜗)))

Proof of Theorem joinimandinc-P4.8a
StepHypRef Expression
1 rcp-NDASM3of3 197 . . . . 5 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜑) → 𝜑)
2 joinimandinc-P4.8a.1 . . . . . . 7 (𝛾 → ((𝜑𝜓) ∧ (𝜒𝜗)))
32rcp-NDIMP1add2 212 . . . . . 6 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜑) → ((𝜑𝜓) ∧ (𝜒𝜗)))
43ndander-P3.9 174 . . . . 5 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜑) → (𝜑𝜓))
51, 4ndime-P3.6 171 . . . 4 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜑) → 𝜓)
65ndorir-P3.11 176 . . 3 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜑) → (𝜓𝜗))
7 rcp-NDASM3of3 197 . . . . 5 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜒) → 𝜒)
82rcp-NDIMP1add2 212 . . . . . 6 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜒) → ((𝜑𝜓) ∧ (𝜒𝜗)))
98ndandel-P3.8 173 . . . . 5 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜒) → (𝜒𝜗))
107, 9ndime-P3.6 171 . . . 4 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜒) → 𝜗)
1110ndoril-P3.10 175 . . 3 ((𝛾 ∧ (𝜑𝜒) ∧ 𝜒) → (𝜓𝜗))
12 rcp-NDASM2of2 194 . . 3 ((𝛾 ∧ (𝜑𝜒)) → (𝜑𝜒))
136, 11, 12rcp-NDORE3 236 . 2 ((𝛾 ∧ (𝜑𝜒)) → (𝜓𝜗))
1413rcp-NDIMI2 224 1 (𝛾 → ((𝜑𝜒) → (𝜓𝜗)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-rcp-AND3 161
This theorem is referenced by:  joinimandinc-P4.8a.RC  398  joinimandinc-P4.8a.CL  399  oroverim-P4.28-L1  465  joinimandinc2-P4  576  joinimandinc3-P4  578
  Copyright terms: Public domain W3C validator