Proof of Theorem qimeqex-P7-L2
| Step | Hyp | Ref
| Expression |
| 1 | | ndnfrex1-P7.8 833 |
. . . 4
⊢ Ⅎ𝑥∃𝑥(𝜑 → 𝜓) |
| 2 | | ndnfrall1-P7.7 832 |
. . . 4
⊢ Ⅎ𝑥∀𝑥𝜑 |
| 3 | 1, 2 | ndnfrand-P7.4.RC 877 |
. . 3
⊢ Ⅎ𝑥(∃𝑥(𝜑 → 𝜓) ∧
∀𝑥𝜑) |
| 4 | | ndnfrex1-P7.8 833 |
. . 3
⊢ Ⅎ𝑥∃𝑥𝜓 |
| 5 | | rcp-NDASM2of3 196 |
. . . . . . 7
⊢ ((∃𝑥(𝜑 → 𝜓) ∧ ∀𝑥𝜑 ∧ (𝜑 → 𝜓)) →
∀𝑥𝜑) |
| 6 | 5 | alle-P7 941 |
. . . . . 6
⊢ ((∃𝑥(𝜑 → 𝜓) ∧ ∀𝑥𝜑 ∧ (𝜑 → 𝜓)) →
𝜑) |
| 7 | | rcp-NDASM3of3 197 |
. . . . . 6
⊢ ((∃𝑥(𝜑 → 𝜓) ∧ ∀𝑥𝜑 ∧ (𝜑 → 𝜓)) →
(𝜑 → 𝜓)) |
| 8 | 6, 7 | ndime-P3.6 171 |
. . . . 5
⊢ ((∃𝑥(𝜑 → 𝜓) ∧ ∀𝑥𝜑 ∧ (𝜑 → 𝜓)) →
𝜓) |
| 9 | 8 | exi-P7 951 |
. . . 4
⊢ ((∃𝑥(𝜑 → 𝜓) ∧ ∀𝑥𝜑 ∧ (𝜑 → 𝜓)) →
∃𝑥𝜓) |
| 10 | 9 | rcp-NDIMI3 225 |
. . 3
⊢ ((∃𝑥(𝜑 → 𝜓) ∧ ∀𝑥𝜑) → ((𝜑 → 𝜓) →
∃𝑥𝜓)) |
| 11 | | rcp-NDASM1of2 193 |
. . 3
⊢ ((∃𝑥(𝜑 → 𝜓) ∧ ∀𝑥𝜑) →
∃𝑥(𝜑
→ 𝜓)) |
| 12 | 3, 4, 10, 11 | exe-P7 955 |
. 2
⊢ ((∃𝑥(𝜑 → 𝜓) ∧ ∀𝑥𝜑) →
∃𝑥𝜓) |
| 13 | 12 | rcp-NDIMI2 224 |
1
⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 →
∃𝑥𝜓)) |