PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qimeqex-P7-L2

Theorem qimeqex-P7-L2 1055
Description: Lemma for qimeqex-P7 1056.
Assertion
Ref Expression
qimeqex-P7-L2 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem qimeqex-P7-L2
StepHypRef Expression
1 ndnfrex1-P7.8 833 . . . 4 𝑥𝑥(𝜑𝜓)
2 ndnfrall1-P7.7 832 . . . 4 𝑥𝑥𝜑
31, 2ndnfrand-P7.4.RC 877 . . 3 𝑥(∃𝑥(𝜑𝜓) ∧ ∀𝑥𝜑)
4 ndnfrex1-P7.8 833 . . 3 𝑥𝑥𝜓
5 rcp-NDASM2of3 196 . . . . . . 7 ((∃𝑥(𝜑𝜓) ∧ ∀𝑥𝜑 ∧ (𝜑𝜓)) → ∀𝑥𝜑)
65alle-P7 941 . . . . . 6 ((∃𝑥(𝜑𝜓) ∧ ∀𝑥𝜑 ∧ (𝜑𝜓)) → 𝜑)
7 rcp-NDASM3of3 197 . . . . . 6 ((∃𝑥(𝜑𝜓) ∧ ∀𝑥𝜑 ∧ (𝜑𝜓)) → (𝜑𝜓))
86, 7ndime-P3.6 171 . . . . 5 ((∃𝑥(𝜑𝜓) ∧ ∀𝑥𝜑 ∧ (𝜑𝜓)) → 𝜓)
98exi-P7 951 . . . 4 ((∃𝑥(𝜑𝜓) ∧ ∀𝑥𝜑 ∧ (𝜑𝜓)) → ∃𝑥𝜓)
109rcp-NDIMI3 225 . . 3 ((∃𝑥(𝜑𝜓) ∧ ∀𝑥𝜑) → ((𝜑𝜓) → ∃𝑥𝜓))
11 rcp-NDASM1of2 193 . . 3 ((∃𝑥(𝜑𝜓) ∧ ∀𝑥𝜑) → ∃𝑥(𝜑𝜓))
123, 4, 10, 11exe-P7 955 . 2 ((∃𝑥(𝜑𝜓) ∧ ∀𝑥𝜑) → ∃𝑥𝜓)
1312rcp-NDIMI2 224 1 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-and 132  wff-rcp-AND3 160  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  qimeqex-P7  1056  qimeqexint-P7  1057
  Copyright terms: Public domain W3C validator