PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  alle-P7

Theorem alle-P7 941
Description: Simplified '' Elimination Law.

This is also known as the Specialization Law. For the original form, using explicit substitution, see ndalle-P7.18 843.

Hypothesis
Ref Expression
alle-P7.1 (𝛾 → ∀𝑥𝜑)
Assertion
Ref Expression
alle-P7 (𝛾𝜑)

Proof of Theorem alle-P7
StepHypRef Expression
1 alle-P7.1 . . 3 (𝛾 → ∀𝑥𝜑)
21ndalle-P7.18 843 . 2 (𝛾 → [𝑥 / 𝑥]𝜑)
3 psubid-P7 940 . 2 ([𝑥 / 𝑥]𝜑𝜑)
42, 3subimr2-P4.RC 543 1 (𝛾𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-forall 8  wff-imp 10  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  alle-P7.CL  942  alle-P7r  992  alle-P7r.RC  993  alleexi-P7  1004  exnegallint-P7  1047  qimeqex-P7-L2  1055
  Copyright terms: Public domain W3C validator