| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > alle-P7 | |||
| Description: Simplified '∀' Elimination Law. †
This is also known as the Specialization Law. For the original form, using explicit substitution, see ndalle-P7.18 843. |
| Ref | Expression |
|---|---|
| alle-P7.1 | ⊢ (𝛾 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| alle-P7 | ⊢ (𝛾 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alle-P7.1 | . . 3 ⊢ (𝛾 → ∀𝑥𝜑) | |
| 2 | 1 | ndalle-P7.18 843 | . 2 ⊢ (𝛾 → [𝑥 / 𝑥]𝜑) |
| 3 | psubid-P7 940 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 4 | 2, 3 | subimr2-P4.RC 543 | 1 ⊢ (𝛾 → 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 ∀wff-forall 8 → wff-imp 10 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: alle-P7.CL 942 alle-P7r 992 alle-P7r.RC 993 alleexi-P7 1004 exnegallint-P7 1047 qimeqex-P7-L2 1055 |
| Copyright terms: Public domain | W3C validator |