Proof of Theorem psubmultv-P6-L1
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM1of3 195 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑡₁
∧ 𝑏 = 𝑡₂ ∧ 𝑥
= 𝑤) → 𝑎
= 𝑡₁) |
| 2 | 1 | eqsym-P5 627 |
. . . . . . . 8
⊢ ((𝑎 = 𝑡₁
∧ 𝑏 = 𝑡₂ ∧ 𝑥
= 𝑤) → 𝑡₁ = 𝑎) |
| 3 | | psubtoisub-P6 765 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝑎 = 𝑡₁
↔ [𝑤 / 𝑥] 𝑎 = 𝑡₁)) |
| 4 | | psubmultv-P6-L1.1 |
. . . . . . . . . . . . 13
⊢ ([𝑤 / 𝑥] 𝑎 = 𝑡₁
↔ 𝑎 = 𝑢₁) |
| 5 | 4 | rcp-NDIMP0addall 207 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 →
([𝑤 / 𝑥]
𝑎 = 𝑡₁
↔ 𝑎 = 𝑢₁)) |
| 6 | 3, 5 | bitrns-P3.33c 302 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑎 = 𝑡₁
↔ 𝑎 = 𝑢₁)) |
| 7 | 6 | rcp-NDIMP0addall 207 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑡₁
∧ 𝑏 = 𝑡₂) → (𝑥 = 𝑤 → (𝑎 = 𝑡₁
↔ 𝑎 = 𝑢₁))) |
| 8 | 7 | rcp-IMPIME2 528 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑡₁
∧ 𝑏 = 𝑡₂ ∧ 𝑥
= 𝑤) → (𝑎 = 𝑡₁
↔ 𝑎 = 𝑢₁)) |
| 9 | 1, 8 | bimpf-P4 531 |
. . . . . . . 8
⊢ ((𝑎 = 𝑡₁
∧ 𝑏 = 𝑡₂ ∧ 𝑥
= 𝑤) → 𝑎
= 𝑢₁) |
| 10 | 2, 9 | eqtrns-P5 630 |
. . . . . . 7
⊢ ((𝑎 = 𝑡₁
∧ 𝑏 = 𝑡₂ ∧ 𝑥
= 𝑤) → 𝑡₁ = 𝑢₁) |
| 11 | | rcp-NDASM2of3 196 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑡₁
∧ 𝑏 = 𝑡₂ ∧ 𝑥
= 𝑤) → 𝑏
= 𝑡₂) |
| 12 | 11 | eqsym-P5 627 |
. . . . . . . 8
⊢ ((𝑎 = 𝑡₁
∧ 𝑏 = 𝑡₂ ∧ 𝑥
= 𝑤) → 𝑡₂ = 𝑏) |
| 13 | | psubtoisub-P6 765 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝑏 = 𝑡₂
↔ [𝑤 / 𝑥] 𝑏 = 𝑡₂)) |
| 14 | | psubmultv-P6-L1.2 |
. . . . . . . . . . . . 13
⊢ ([𝑤 / 𝑥] 𝑏 = 𝑡₂
↔ 𝑏 = 𝑢₂) |
| 15 | 14 | rcp-NDIMP0addall 207 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 →
([𝑤 / 𝑥]
𝑏 = 𝑡₂
↔ 𝑏 = 𝑢₂)) |
| 16 | 13, 15 | bitrns-P3.33c 302 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑏 = 𝑡₂
↔ 𝑏 = 𝑢₂)) |
| 17 | 16 | rcp-NDIMP0addall 207 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑡₁
∧ 𝑏 = 𝑡₂) → (𝑥 = 𝑤 → (𝑏 = 𝑡₂
↔ 𝑏 = 𝑢₂))) |
| 18 | 17 | rcp-IMPIME2 528 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑡₁
∧ 𝑏 = 𝑡₂ ∧ 𝑥
= 𝑤) → (𝑏 = 𝑡₂
↔ 𝑏 = 𝑢₂)) |
| 19 | 11, 18 | bimpf-P4 531 |
. . . . . . . 8
⊢ ((𝑎 = 𝑡₁
∧ 𝑏 = 𝑡₂ ∧ 𝑥
= 𝑤) → 𝑏
= 𝑢₂) |
| 20 | 12, 19 | eqtrns-P5 630 |
. . . . . . 7
⊢ ((𝑎 = 𝑡₁
∧ 𝑏 = 𝑡₂ ∧ 𝑥
= 𝑤) → 𝑡₂ = 𝑢₂) |
| 21 | 10, 20 | submultd-P5 651 |
. . . . . 6
⊢ ((𝑎 = 𝑡₁
∧ 𝑏 = 𝑡₂ ∧ 𝑥
= 𝑤) → (𝑡₁ ⋅ 𝑡₂) = (𝑢₁ ⋅ 𝑢₂)) |
| 22 | 21 | subeqr-P5 635 |
. . . . 5
⊢ ((𝑎 = 𝑡₁
∧ 𝑏 = 𝑡₂ ∧ 𝑥
= 𝑤) → (𝑐 = (𝑡₁
⋅ 𝑡₂) ↔ 𝑐 = (𝑢₁
⋅ 𝑢₂))) |
| 23 | 22 | rcp-NDIMI3 225 |
. . . 4
⊢ ((𝑎 = 𝑡₁
∧ 𝑏 = 𝑡₂) → (𝑥 = 𝑤 → (𝑐 = (𝑡₁
⋅ 𝑡₂) ↔ 𝑐 = (𝑢₁
⋅ 𝑢₂)))) |
| 24 | 23 | rcp-NDIMI2 224 |
. . 3
⊢ (𝑎 = 𝑡₁
→ (𝑏 = 𝑡₂ → (𝑥
= 𝑤 → (𝑐
= (𝑡₁ ⋅ 𝑡₂) ↔ 𝑐
= (𝑢₁ ⋅ 𝑢₂))))) |
| 25 | | axL6ex-P5 625 |
. . 3
⊢ ∃𝑎 𝑎 = 𝑡₁ |
| 26 | 24, 25 | exiav-P5.SH 616 |
. 2
⊢ (𝑏 = 𝑡₂
→ (𝑥 = 𝑤
→ (𝑐 = (𝑡₁ ⋅ 𝑡₂) ↔ 𝑐
= (𝑢₁ ⋅ 𝑢₂)))) |
| 27 | | axL6ex-P5 625 |
. 2
⊢ ∃𝑏 𝑏 = 𝑡₂ |
| 28 | 26, 27 | exiav-P5.SH 616 |
1
⊢ (𝑥 = 𝑤 → (𝑐 = (𝑡₁
⋅ 𝑡₂) ↔ 𝑐 = (𝑢₁
⋅ 𝑢₂))) |