PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-IMPIME2

Theorem rcp-IMPIME2 528
Description: '' Elimination with Importation.
Hypothesis
Ref Expression
rcp-IMPIME2.1 ((𝛾₁𝛾₂) → (𝜑𝜓))
Assertion
Ref Expression
rcp-IMPIME2 ((𝛾₁𝛾₂𝜑) → 𝜓)

Proof of Theorem rcp-IMPIME2
StepHypRef Expression
1 rcp-IMPIME2.1 . . 3 ((𝛾₁𝛾₂) → (𝜑𝜓))
21impime-P4 526 . 2 (((𝛾₁𝛾₂) ∧ 𝜑) → 𝜓)
32rcp-NDJOIN3 189 1 ((𝛾₁𝛾₂𝜑) → 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161
This theorem is referenced by:  psubaddv-P6-L1  807  psubmultv-P6-L1  809
  Copyright terms: Public domain W3C validator