PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-IMPIME1

Theorem rcp-IMPIME1 527
Description: '' Elimination with Importation.
Hypothesis
Ref Expression
rcp-IMPIME1.1 (𝛾₁ → (𝜑𝜓))
Assertion
Ref Expression
rcp-IMPIME1 ((𝛾₁𝜑) → 𝜓)

Proof of Theorem rcp-IMPIME1
StepHypRef Expression
1 rcp-IMPIME1.1 . 2 (𝛾₁ → (𝜑𝜓))
21impime-P4 526 1 ((𝛾₁𝜑) → 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  dalloverim-P5  590
  Copyright terms: Public domain W3C validator