PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  impime-P4

Theorem impime-P4 526
Description: '' Elimination with Importation.
Hypothesis
Ref Expression
impime-P4.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
impime-P4 ((𝛾𝜑) → 𝜓)

Proof of Theorem impime-P4
StepHypRef Expression
1 rcp-NDASM2of2 194 . 2 ((𝛾𝜑) → 𝜑)
2 impime-P4.1 . . 3 (𝛾 → (𝜑𝜓))
32rcp-NDIMP1add1 208 . 2 ((𝛾𝜑) → (𝜑𝜓))
41, 3ndime-P3.6 171 1 ((𝛾𝜑) → 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  rcp-IMPIME1  527  rcp-IMPIME2  528  rcp-IMPIME3  529  rcp-IMPIME4  530
  Copyright terms: Public domain W3C validator