| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-FALSERAA5 | |||
| Description: Reductio ad Absurdum Using '⊥'. |
| Ref | Expression |
|---|---|
| rcp-FALSERAA5.1 | ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ ¬ 𝛾₅) → ⊥) |
| Ref | Expression |
|---|---|
| rcp-FALSERAA5 | ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝛾₅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-FALSERAA5.1 | . . 3 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ ¬ 𝛾₅) → ⊥) | |
| 2 | 1 | rcp-FALSENEGI5 437 | . 2 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → ¬ ¬ 𝛾₅) |
| 3 | 2 | dnege-P3.30 276 | 1 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝛾₅) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ⊥wff-false 157 ∧ wff-rcp-AND4 162 ∧ wff-rcp-AND5 164 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-false-D2.5 158 df-rcp-AND5 165 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |