| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > eqsym-P5 | |||
| Description: Equivalence Property: '=' symmetry. |
| Ref | Expression |
|---|---|
| eqsym-P5.1 | ⊢ (𝛾 → 𝑡 = 𝑢) |
| Ref | Expression |
|---|---|
| eqsym-P5 | ⊢ (𝛾 → 𝑢 = 𝑡) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsym-P5.1 | . 2 ⊢ (𝛾 → 𝑡 = 𝑢) | |
| 2 | ax-L7 19 | . . . 4 ⊢ (𝑡 = 𝑢 → (𝑡 = 𝑡 → 𝑢 = 𝑡)) | |
| 3 | 2 | rcp-NDIMP0addall 207 | . . 3 ⊢ (𝛾 → (𝑡 = 𝑢 → (𝑡 = 𝑡 → 𝑢 = 𝑡))) |
| 4 | eqref-P5 626 | . . . 4 ⊢ 𝑡 = 𝑡 | |
| 5 | 4 | rcp-NDIMP0addall 207 | . . 3 ⊢ (𝛾 → 𝑡 = 𝑡) |
| 6 | 3, 5 | mae-P3.23 257 | . 2 ⊢ (𝛾 → (𝑡 = 𝑢 → 𝑢 = 𝑡)) |
| 7 | 1, 6 | ndime-P3.6 171 | 1 ⊢ (𝛾 → 𝑢 = 𝑡) |
| Colors of variables: wff objvar term class |
| Syntax hints: = wff-equals 6 → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: eqsym-P5.CL 628 subeql-P5 632 spliteq-P6-L1 775 psubsuccv-P6-L1 805 psubaddv-P6-L1 807 psubmultv-P6-L1 809 |
| Copyright terms: Public domain | W3C validator |