PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  eqsym-P5

Theorem eqsym-P5 627
Description: Equivalence Property: '=' symmetry.
Hypothesis
Ref Expression
eqsym-P5.1 (𝛾𝑡 = 𝑢)
Assertion
Ref Expression
eqsym-P5 (𝛾𝑢 = 𝑡)

Proof of Theorem eqsym-P5
StepHypRef Expression
1 eqsym-P5.1 . 2 (𝛾𝑡 = 𝑢)
2 ax-L7 19 . . . 4 (𝑡 = 𝑢 → (𝑡 = 𝑡𝑢 = 𝑡))
32rcp-NDIMP0addall 207 . . 3 (𝛾 → (𝑡 = 𝑢 → (𝑡 = 𝑡𝑢 = 𝑡)))
4 eqref-P5 626 . . . 4 𝑡 = 𝑡
54rcp-NDIMP0addall 207 . . 3 (𝛾𝑡 = 𝑡)
63, 5mae-P3.23 257 . 2 (𝛾 → (𝑡 = 𝑢𝑢 = 𝑡))
71, 6ndime-P3.6 171 1 (𝛾𝑢 = 𝑡)
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  eqsym-P5.CL  628  subeql-P5  632  spliteq-P6-L1  775  psubsuccv-P6-L1  805  psubaddv-P6-L1  807  psubmultv-P6-L1  809
  Copyright terms: Public domain W3C validator