PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  mae-P3.23

Theorem mae-P3.23 257
Description: Middle Antecedent Elimination.
Hypotheses
Ref Expression
mae-P3.23.1 (𝛾 → (𝜑 → (𝜓𝜒)))
mae-P3.23.2 (𝛾𝜓)
Assertion
Ref Expression
mae-P3.23 (𝛾 → (𝜑𝜒))

Proof of Theorem mae-P3.23
StepHypRef Expression
1 mae-P3.23.2 . . . 4 (𝛾𝜓)
21rcp-NDIMP1add1 208 . . 3 ((𝛾𝜑) → 𝜓)
3 rcp-NDASM2of2 194 . . . 4 ((𝛾𝜑) → 𝜑)
4 mae-P3.23.1 . . . . 5 (𝛾 → (𝜑 → (𝜓𝜒)))
54rcp-NDIMP1add1 208 . . . 4 ((𝛾𝜑) → (𝜑 → (𝜓𝜒)))
63, 5ndime-P3.6 171 . . 3 ((𝛾𝜑) → (𝜓𝜒))
72, 6ndime-P3.6 171 . 2 ((𝛾𝜑) → 𝜒)
87rcp-NDIMI2 224 1 (𝛾 → (𝜑𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  mae-P3.23.RC  258  eqsym-P5  627  exi-P6  718
  Copyright terms: Public domain W3C validator