PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  mae-P3.23.RC

Theorem mae-P3.23.RC 258
Description: Inference Form of mae-P3.23 257.
Hypotheses
Ref Expression
mae-P3.23.RC.1 (𝜑 → (𝜓𝜒))
mae-P3.23.RC.2 𝜓
Assertion
Ref Expression
mae-P3.23.RC (𝜑𝜒)

Proof of Theorem mae-P3.23.RC
StepHypRef Expression
1 mae-P3.23.RC.1 . . . 4 (𝜑 → (𝜓𝜒))
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑 → (𝜓𝜒)))
3 mae-P3.23.RC.2 . . . 4 𝜓
43ndtruei-P3.17 182 . . 3 (⊤ → 𝜓)
52, 4mae-P3.23 257 . 2 (⊤ → (𝜑𝜒))
65ndtruee-P3.18 183 1 (𝜑𝜒)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  lemma-L5.02a  653  exipsub-P6  720  lemma-L6.04a  749  dfpsubv-P7  977  example-E7.1b  1075
  Copyright terms: Public domain W3C validator