| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > mae-P3.23.RC | |||
| Description: Inference Form of mae-P3.23 257. † |
| Ref | Expression |
|---|---|
| mae-P3.23.RC.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| mae-P3.23.RC.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| mae-P3.23.RC | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mae-P3.23.RC.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 → (𝜓 → 𝜒))) |
| 3 | mae-P3.23.RC.2 | . . . 4 ⊢ 𝜓 | |
| 4 | 3 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → 𝜓) |
| 5 | 2, 4 | mae-P3.23 257 | . 2 ⊢ (⊤ → (𝜑 → 𝜒)) |
| 6 | 5 | ndtruee-P3.18 183 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: lemma-L5.02a 653 exipsub-P6 720 lemma-L6.04a 749 dfpsubv-P7 977 example-E7.1b 1075 |
| Copyright terms: Public domain | W3C validator |