PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L6.04a

Theorem lemma-L6.04a 749
Description: Version of lemma-L5.02a 653 with non-freeness condition.

'𝑥 cannot occur in '𝑡'.

Hypotheses
Ref Expression
lemma-L6.04a.1 𝑥𝜓
lemma-L6.04a.2 (𝑥 = 𝑡 → (𝜑𝜓))
Assertion
Ref Expression
lemma-L6.04a (∀𝑥𝜑𝜓)
Distinct variable group:   𝑡,𝑥

Proof of Theorem lemma-L6.04a
StepHypRef Expression
1 lemma-L6.04a.2 . . . . 5 (𝑥 = 𝑡 → (𝜑𝜓))
21imcomm-P3.27.RC 266 . . . 4 (𝜑 → (𝑥 = 𝑡𝜓))
32dalloverimex-P5.RC.GEN 607 . . 3 (∀𝑥𝜑 → (∃𝑥 𝑥 = 𝑡 → ∃𝑥𝜓))
4 axL6ex-P5 625 . . 3 𝑥 𝑥 = 𝑡
53, 4mae-P3.23.RC 258 . 2 (∀𝑥𝜑 → ∃𝑥𝜓)
6 lemma-L6.04a.1 . . 3 𝑥𝜓
76nfrexgen-P6 735 . 2 (∃𝑥𝜓𝜓)
85, 7syl-P3.24.RC 260 1 (∀𝑥𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  cbvall-P6-L1  750
  Copyright terms: Public domain W3C validator