| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > lemma-L6.04a | |||
| Description: Version of lemma-L5.02a 653 with non-freeness condition.
'𝑥 cannot occur in '𝑡'. |
| Ref | Expression |
|---|---|
| lemma-L6.04a.1 | ⊢ Ⅎ𝑥𝜓 |
| lemma-L6.04a.2 | ⊢ (𝑥 = 𝑡 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| lemma-L6.04a | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemma-L6.04a.2 | . . . . 5 ⊢ (𝑥 = 𝑡 → (𝜑 → 𝜓)) | |
| 2 | 1 | imcomm-P3.27.RC 266 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑡 → 𝜓)) |
| 3 | 2 | dalloverimex-P5.RC.GEN 607 | . . 3 ⊢ (∀𝑥𝜑 → (∃𝑥 𝑥 = 𝑡 → ∃𝑥𝜓)) |
| 4 | axL6ex-P5 625 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑡 | |
| 5 | 3, 4 | mae-P3.23.RC 258 | . 2 ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) |
| 6 | lemma-L6.04a.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 7 | 6 | nfrexgen-P6 735 | . 2 ⊢ (∃𝑥𝜓 → 𝜓) |
| 8 | 5, 7 | syl-P3.24.RC 260 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: cbvall-P6-L1 750 |
| Copyright terms: Public domain | W3C validator |