| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > exipsub-P6 | |||
| Description: Existential Quantifier
Introduction Law (proper substitution).
This is the form most often seen in logic text books. |
| Ref | Expression |
|---|---|
| exipsub-P6 | ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psub-D6.2 716 | . . 3 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | 1 | rcp-NDBIEF0 240 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 3 | alloverimex-P5.CL 604 | . . 3 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → (∃𝑦 𝑦 = 𝑡 → ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 4 | axL6ex-P5 625 | . . 3 ⊢ ∃𝑦 𝑦 = 𝑡 | |
| 5 | 3, 4 | mae-P3.23.RC 258 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 6 | alloverimex-P5.CL 604 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑)) | |
| 7 | axL6ex-P5 625 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 8 | 6, 7 | mae-P3.23.RC 258 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) |
| 9 | 8 | exiav-P5 615 | . 2 ⊢ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) |
| 10 | 2, 5, 9 | dsyl-P3.25.RC 262 | 1 ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ∃wff-exists 595 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-psub-D6.2 716 |
| This theorem is referenced by: ndexi-P7.19 844 |
| Copyright terms: Public domain | W3C validator |