PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exipsub-P6

Theorem exipsub-P6 720
Description: Existential Quantifier Introduction Law (proper substitution).

This is the form most often seen in logic text books.

Assertion
Ref Expression
exipsub-P6 ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑)

Proof of Theorem exipsub-P6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-psub-D6.2 716 . . 3 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
21rcp-NDBIEF0 240 . 2 ([𝑡 / 𝑥]𝜑 → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
3 alloverimex-P5.CL 604 . . 3 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → (∃𝑦 𝑦 = 𝑡 → ∃𝑦𝑥(𝑥 = 𝑦𝜑)))
4 axL6ex-P5 625 . . 3 𝑦 𝑦 = 𝑡
53, 4mae-P3.23.RC 258 . 2 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → ∃𝑦𝑥(𝑥 = 𝑦𝜑))
6 alloverimex-P5.CL 604 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑))
7 axL6ex-P5 625 . . . 4 𝑥 𝑥 = 𝑦
86, 7mae-P3.23.RC 258 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
98exiav-P5 615 . 2 (∃𝑦𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
102, 5, 9dsyl-P3.25.RC 262 1 ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-exists 595  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-psub-D6.2 716
This theorem is referenced by:  ndexi-P7.19  844
  Copyright terms: Public domain W3C validator