PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  spec-P6

Theorem spec-P6 719
Description: Law of Specialization.

See specw-P5 661 for a version that requires only FOL axioms.

Assertion
Ref Expression
spec-P6 (∀𝑥𝜑𝜑)

Proof of Theorem spec-P6
StepHypRef Expression
1 exi-P6 718 . . 3 𝜑 → ∃𝑥 ¬ 𝜑)
21trnsp-P3.31b.RC 283 . 2 (¬ ∃𝑥 ¬ 𝜑𝜑)
3 allasex-P5 599 . . 3 (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)
43bisym-P3.33b.RC 299 . 2 (¬ ∃𝑥 ¬ 𝜑 ↔ ∀𝑥𝜑)
52, 4subiml2-P4.RC 541 1 (∀𝑥𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  qremall-P6  722  qremex-P6  723  lemma-L6.01a  724  nfrterm-P6  779  qremexd-P6  823
  Copyright terms: Public domain W3C validator