| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > spec-P6 | |||
| Description: Law of Specialization.
See specw-P5 661 for a version that requires only FOL axioms. |
| Ref | Expression |
|---|---|
| spec-P6 | ⊢ (∀𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exi-P6 718 | . . 3 ⊢ (¬ 𝜑 → ∃𝑥 ¬ 𝜑) | |
| 2 | 1 | trnsp-P3.31b.RC 283 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 → 𝜑) |
| 3 | allasex-P5 599 | . . 3 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 4 | 3 | bisym-P3.33b.RC 299 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 ↔ ∀𝑥𝜑) |
| 5 | 2, 4 | subiml2-P4.RC 541 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: qremall-P6 722 qremex-P6 723 lemma-L6.01a 724 nfrterm-P6 779 qremexd-P6 823 |
| Copyright terms: Public domain | W3C validator |