PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  trnsp-P3.31b.RC

Theorem trnsp-P3.31b.RC 283
Description: Inference Form of trnsp-P3.31b 282.
Hypothesis
Ref Expression
trnsp-P3.31b.RC.1 𝜑𝜓)
Assertion
Ref Expression
trnsp-P3.31b.RC 𝜓𝜑)

Proof of Theorem trnsp-P3.31b.RC
StepHypRef Expression
1 trnsp-P3.31b.RC.1 . . . 4 𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (¬ 𝜑𝜓))
32trnsp-P3.31b 282 . 2 (⊤ → (¬ 𝜓𝜑))
43ndtruee-P3.18 183 1 𝜓𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  dmorgbfwd-L4.3  454  spec-P6  719
  Copyright terms: Public domain W3C validator