PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L6.01a

Theorem lemma-L6.01a 724
Description: This lemma is the result of solvesub-P6b 707 with no hypothesis required.

'𝑥' cannot occur in '𝑡'.

Assertion
Ref Expression
lemma-L6.01a (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑)))
Distinct variable group:   𝑡,𝑥

Proof of Theorem lemma-L6.01a
StepHypRef Expression
1 ax-L12 29 . 2 (𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
2 spec-P6 719 . . 3 (∀𝑥(𝑥 = 𝑡𝜑) → (𝑥 = 𝑡𝜑))
32imcomm-P3.27.RC 266 . 2 (𝑥 = 𝑡 → (∀𝑥(𝑥 = 𝑡𝜑) → 𝜑))
41, 3ndbii-P3.13 178 1 (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑)))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  psubtoisubv-P6  725  lemma-L6.05a  764  lemma-L6.07a-L1  770  lemma-L6.07a-L2  771
  Copyright terms: Public domain W3C validator