| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > lemma-L6.01a | |||
| Description: This lemma is the result
of solvesub-P6b 707 with no hypothesis
required.
'𝑥' cannot occur in '𝑡'. |
| Ref | Expression |
|---|---|
| lemma-L6.01a | ⊢ (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-L12 29 | . 2 ⊢ (𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) | |
| 2 | spec-P6 719 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) → (𝑥 = 𝑡 → 𝜑)) | |
| 3 | 2 | imcomm-P3.27.RC 266 | . 2 ⊢ (𝑥 = 𝑡 → (∀𝑥(𝑥 = 𝑡 → 𝜑) → 𝜑)) |
| 4 | 1, 3 | ndbii-P3.13 178 | 1 ⊢ (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: psubtoisubv-P6 725 lemma-L6.05a 764 lemma-L6.07a-L1 770 lemma-L6.07a-L2 771 |
| Copyright terms: Public domain | W3C validator |