| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > qremexd-P6 | |||
| Description: Existential Quantifier Removal Theorem (deductive form). |
| Ref | Expression |
|---|---|
| qremexd-P6.1 | ⊢ (𝛾 → Ⅎ𝑥𝜑) |
| Ref | Expression |
|---|---|
| qremexd-P6 | ⊢ (𝛾 → (∃𝑥𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qremexd-P6.1 | . . . 4 ⊢ (𝛾 → Ⅎ𝑥𝜑) | |
| 2 | dfnfreealt-P6 683 | . . . 4 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 3 | 1, 2 | subimr2-P4.RC 543 | . . 3 ⊢ (𝛾 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 4 | spec-P6 719 | . . . 4 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 5 | 4 | rcp-NDIMP0addall 207 | . . 3 ⊢ (𝛾 → (∀𝑥𝜑 → 𝜑)) |
| 6 | 3, 5 | syl-P3.24 259 | . 2 ⊢ (𝛾 → (∃𝑥𝜑 → 𝜑)) |
| 7 | exi-P6 718 | . . 3 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 8 | 7 | rcp-NDIMP0addall 207 | . 2 ⊢ (𝛾 → (𝜑 → ∃𝑥𝜑)) |
| 9 | 6, 8 | ndbii-P3.13 178 | 1 ⊢ (𝛾 → (∃𝑥𝜑 ↔ 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: exiad-P6 824 |
| Copyright terms: Public domain | W3C validator |