PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qremexd-P6

Theorem qremexd-P6 823
Description: Existential Quantifier Removal Theorem (deductive form).
Hypothesis
Ref Expression
qremexd-P6.1 (𝛾 → Ⅎ𝑥𝜑)
Assertion
Ref Expression
qremexd-P6 (𝛾 → (∃𝑥𝜑𝜑))

Proof of Theorem qremexd-P6
StepHypRef Expression
1 qremexd-P6.1 . . . 4 (𝛾 → Ⅎ𝑥𝜑)
2 dfnfreealt-P6 683 . . . 4 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
31, 2subimr2-P4.RC 543 . . 3 (𝛾 → (∃𝑥𝜑 → ∀𝑥𝜑))
4 spec-P6 719 . . . 4 (∀𝑥𝜑𝜑)
54rcp-NDIMP0addall 207 . . 3 (𝛾 → (∀𝑥𝜑𝜑))
63, 5syl-P3.24 259 . 2 (𝛾 → (∃𝑥𝜑𝜑))
7 exi-P6 718 . . 3 (𝜑 → ∃𝑥𝜑)
87rcp-NDIMP0addall 207 . 2 (𝛾 → (𝜑 → ∃𝑥𝜑))
96, 8ndbii-P3.13 178 1 (𝛾 → (∃𝑥𝜑𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  exiad-P6  824
  Copyright terms: Public domain W3C validator