PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qremall-P6

Theorem qremall-P6 722
Description: Universal Quantifier Removal (non-freeness condition).

See qremallw-P6 702 for a version that requires only FOL axioms.

Hypothesis
Ref Expression
qremall-P6.1 𝑥𝜑
Assertion
Ref Expression
qremall-P6 (∀𝑥𝜑𝜑)

Proof of Theorem qremall-P6
StepHypRef Expression
1 spec-P6 719 . 2 (∀𝑥𝜑𝜑)
2 exi-P6 718 . . 3 (𝜑 → ∃𝑥𝜑)
3 qremall-P6.1 . . . 4 𝑥𝜑
4 dfnfreealt-P6 683 . . . 4 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
53, 4bimpf-P4.RC 532 . . 3 (∃𝑥𝜑 → ∀𝑥𝜑)
62, 5syl-P3.24.RC 260 . 2 (𝜑 → ∀𝑥𝜑)
71, 6rcp-NDBII0 239 1 (∀𝑥𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  lemma-L6.02a  726  qceximr-P6  758  qceximl-P6  760  psubnfr-P6  784
  Copyright terms: Public domain W3C validator