PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  specpsub-P6

Theorem specpsub-P6 721
Description: Law of Specialization. (proper substitution).

This is the form most often seen in logic text books.

Assertion
Ref Expression
specpsub-P6 (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑)

Proof of Theorem specpsub-P6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 axL1-P3.21.CL 253 . . . . 5 (𝜑 → (𝑥 = 𝑦𝜑))
21alloverim-P5.RC.GEN 592 . . . 4 (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
32axL1-P3.21 252 . . 3 (∀𝑥𝜑 → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
43allicv-P5 614 . 2 (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
5 df-psub-D6.2 716 . . 3 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
65bisym-P3.33b.RC 299 . 2 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ [𝑡 / 𝑥]𝜑)
74, 6subimr2-P4.RC 543 1 (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-psub-D6.2 716
This theorem is referenced by:  ndalle-P7.18  843
  Copyright terms: Public domain W3C validator