PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL1-P3.21.CL

Theorem axL1-P3.21.CL 253
Description: Closed Form of axL1-P3.21 252 (Axiom L1).
Assertion
Ref Expression
axL1-P3.21.CL (𝜑 → (𝜓𝜑))

Proof of Theorem axL1-P3.21.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (𝜑𝜑)
21axL1-P3.21 252 1 (𝜑 → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  trueie-P4.22a  444  qimeqallhalf-P5  609  qimeqex-P5-L1  610  specpsub-P6  721  psubim-P6-L2  790
  Copyright terms: Public domain W3C validator