| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > qceximl-P6 | |||
| Description: Quantifier Collection Law: Existential Quantifier Left on Implication (non-freeness condition). |
| Ref | Expression |
|---|---|
| qceximl-P6.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| qceximl-P6 | ⊢ ((∃𝑥𝜑 → 𝜓) ↔ ∀𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qceximl-P6.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | qimeqallb-P6 701 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓)) |
| 3 | 2 | bisym-P3.33b.RC 299 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓)) |
| 4 | 1 | qremall-P6 722 | . . 3 ⊢ (∀𝑥𝜓 ↔ 𝜓) |
| 5 | 4 | subimr-P3.40b.RC 328 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| 6 | 3, 5 | subbil2-P4.RC 547 | 1 ⊢ ((∃𝑥𝜑 → 𝜓) ↔ ∀𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: qcexandl-P6 762 |
| Copyright terms: Public domain | W3C validator |