PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  allasex-P5

Theorem allasex-P5 599
Description: Universal Quantification in Terms of Existential Quantification.

Dual of df-exists-D5.1 596.

Assertion
Ref Expression
allasex-P5 (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)

Proof of Theorem allasex-P5
StepHypRef Expression
1 exnegall-P5 598 . . . 4 (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
21subneg-P3.39.RC 324 . . 3 (¬ ∃𝑥 ¬ 𝜑 ↔ ¬ ¬ ∀𝑥𝜑)
3 dnegeq-P4.10 418 . . 3 (¬ ¬ ∀𝑥𝜑 ↔ ∀𝑥𝜑)
42, 3bitrns-P3.33c.RC 303 . 2 (¬ ∃𝑥 ¬ 𝜑 ↔ ∀𝑥𝜑)
54bisym-P3.33b.RC 299 1 (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  spec-P6  719  psubneg-P6-L1  787
  Copyright terms: Public domain W3C validator