PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL2-P3.22.CL

Theorem axL2-P3.22.CL 256
Description: Closed Form of axL2-P3.22 254 (Axiom L2).
Assertion
Ref Expression
axL2-P3.22.CL ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))

Proof of Theorem axL2-P3.22.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 ((𝜑 → (𝜓𝜒)) → (𝜑 → (𝜓𝜒)))
21axL2-P3.22 254 1 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  imoverim-P4.30a  477  psubim-P6-L1  789
  Copyright terms: Public domain W3C validator