PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  eqref-P5

Theorem eqref-P5 626
Description: Equivalence Property: '=' Reflexivity.
Assertion
Ref Expression
eqref-P5 𝑡 = 𝑡

Proof of Theorem eqref-P5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-L7 19 . . 3 (𝑥 = 𝑡 → (𝑥 = 𝑡𝑡 = 𝑡))
21rae-P3.26.RC 264 . 2 (𝑥 = 𝑡𝑡 = 𝑡)
3 axL6ex-P5 625 . 2 𝑥 𝑥 = 𝑡
42, 3exiav-P5.SH 616 1 𝑡 = 𝑡
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  eqsym-P5  627  ndeqi-P7.21  846
  Copyright terms: Public domain W3C validator