PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  joinimor-P4.8c

Theorem joinimor-P4.8c 403
Description: Join Two Implications Through Disjunction.
Hypothesis
Ref Expression
joinimor-P4.8c.1 (𝛾 → ((𝜑𝜓) ∨ (𝜒𝜗)))
Assertion
Ref Expression
joinimor-P4.8c (𝛾 → ((𝜑𝜒) → (𝜓𝜗)))

Proof of Theorem joinimor-P4.8c
StepHypRef Expression
1 rcp-NDASM2of3 196 . . . . . 6 ((𝛾 ∧ (𝜑𝜒) ∧ (𝜑𝜓)) → (𝜑𝜒))
21ndander-P3.9 174 . . . . 5 ((𝛾 ∧ (𝜑𝜒) ∧ (𝜑𝜓)) → 𝜑)
3 rcp-NDASM3of3 197 . . . . 5 ((𝛾 ∧ (𝜑𝜒) ∧ (𝜑𝜓)) → (𝜑𝜓))
42, 3ndime-P3.6 171 . . . 4 ((𝛾 ∧ (𝜑𝜒) ∧ (𝜑𝜓)) → 𝜓)
54ndorir-P3.11 176 . . 3 ((𝛾 ∧ (𝜑𝜒) ∧ (𝜑𝜓)) → (𝜓𝜗))
6 rcp-NDASM2of3 196 . . . . . 6 ((𝛾 ∧ (𝜑𝜒) ∧ (𝜒𝜗)) → (𝜑𝜒))
76ndandel-P3.8 173 . . . . 5 ((𝛾 ∧ (𝜑𝜒) ∧ (𝜒𝜗)) → 𝜒)
8 rcp-NDASM3of3 197 . . . . 5 ((𝛾 ∧ (𝜑𝜒) ∧ (𝜒𝜗)) → (𝜒𝜗))
97, 8ndime-P3.6 171 . . . 4 ((𝛾 ∧ (𝜑𝜒) ∧ (𝜒𝜗)) → 𝜗)
109ndoril-P3.10 175 . . 3 ((𝛾 ∧ (𝜑𝜒) ∧ (𝜒𝜗)) → (𝜓𝜗))
11 joinimor-P4.8c.1 . . . 4 (𝛾 → ((𝜑𝜓) ∨ (𝜒𝜗)))
1211rcp-NDIMP1add1 208 . . 3 ((𝛾 ∧ (𝜑𝜒)) → ((𝜑𝜓) ∨ (𝜒𝜗)))
135, 10, 12rcp-NDORE3 236 . 2 ((𝛾 ∧ (𝜑𝜒)) → (𝜓𝜗))
1413rcp-NDIMI2 224 1 (𝛾 → ((𝜑𝜒) → (𝜓𝜗)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-rcp-AND3 161
This theorem is referenced by:  joinimor-P4.8c.RC  404  joinimor-P4.8c.CL  405  oroverim-P4.28-L1  465  joinimor2-P4  584  joinimor3-P4  586
  Copyright terms: Public domain W3C validator