Proof of Theorem joinimor-P4.8c
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM2of3 196 |
. . . . . 6
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒) ∧ (𝜑
→ 𝜓)) → (𝜑 ∧ 𝜒)) |
| 2 | 1 | ndander-P3.9 174 |
. . . . 5
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒) ∧ (𝜑
→ 𝜓)) → 𝜑) |
| 3 | | rcp-NDASM3of3 197 |
. . . . 5
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒) ∧ (𝜑
→ 𝜓)) → (𝜑 → 𝜓)) |
| 4 | 2, 3 | ndime-P3.6 171 |
. . . 4
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒) ∧ (𝜑
→ 𝜓)) → 𝜓) |
| 5 | 4 | ndorir-P3.11 176 |
. . 3
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒) ∧ (𝜑
→ 𝜓)) → (𝜓 ∨ 𝜗)) |
| 6 | | rcp-NDASM2of3 196 |
. . . . . 6
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒) ∧ (𝜒
→ 𝜗)) → (𝜑 ∧ 𝜒)) |
| 7 | 6 | ndandel-P3.8 173 |
. . . . 5
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒) ∧ (𝜒
→ 𝜗)) → 𝜒) |
| 8 | | rcp-NDASM3of3 197 |
. . . . 5
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒) ∧ (𝜒
→ 𝜗)) → (𝜒 → 𝜗)) |
| 9 | 7, 8 | ndime-P3.6 171 |
. . . 4
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒) ∧ (𝜒
→ 𝜗)) → 𝜗) |
| 10 | 9 | ndoril-P3.10 175 |
. . 3
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒) ∧ (𝜒
→ 𝜗)) → (𝜓 ∨ 𝜗)) |
| 11 | | joinimor-P4.8c.1 |
. . . 4
⊢ (𝛾 → ((𝜑 →
𝜓) ∨ (𝜒
→ 𝜗))) |
| 12 | 11 | rcp-NDIMP1add1 208 |
. . 3
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → ((𝜑
→ 𝜓) ∨ (𝜒 → 𝜗))) |
| 13 | 5, 10, 12 | rcp-NDORE3 236 |
. 2
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → (𝜓
∨ 𝜗)) |
| 14 | 13 | rcp-NDIMI2 224 |
1
⊢ (𝛾 → ((𝜑 ∧
𝜒) → (𝜓
∨ 𝜗))) |