| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > imasor-P4.32-L1 | |||
| Description: Lemma for imasor-P4.32a 487. |
| Ref | Expression |
|---|---|
| imasor-P4.32-L1 | ⊢ ((𝜑 → 𝜓) → (¬ 𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . . . 4 ⊢ (((𝜑 → 𝜓) ∧ 𝜑) → 𝜑) | |
| 2 | rcp-NDASM1of2 193 | . . . 4 ⊢ (((𝜑 → 𝜓) ∧ 𝜑) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | ndime-P3.6 171 | . . 3 ⊢ (((𝜑 → 𝜓) ∧ 𝜑) → 𝜓) |
| 4 | 3 | ndoril-P3.10 175 | . 2 ⊢ (((𝜑 → 𝜓) ∧ 𝜑) → (¬ 𝜑 ∨ 𝜓)) |
| 5 | rcp-NDASM2of2 194 | . . 3 ⊢ (((𝜑 → 𝜓) ∧ ¬ 𝜑) → ¬ 𝜑) | |
| 6 | 5 | ndorir-P3.11 176 | . 2 ⊢ (((𝜑 → 𝜓) ∧ ¬ 𝜑) → (¬ 𝜑 ∨ 𝜓)) |
| 7 | ndexclmid-P3.16.AC 251 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 ∨ ¬ 𝜑)) | |
| 8 | 4, 6, 7 | rcp-NDORE2 235 | 1 ⊢ ((𝜑 → 𝜓) → (¬ 𝜑 ∨ 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 |
| This theorem is referenced by: imasor-P4.32a 487 |
| Copyright terms: Public domain | W3C validator |