PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L4.5

Theorem lemma-L4.5 484
Description: Lemma 4.5.
Assertion
Ref Expression
lemma-L4.5 (¬ (𝜑 ∧ ¬ 𝜓) ↔ (¬ 𝜑𝜓))

Proof of Theorem lemma-L4.5
StepHypRef Expression
1 dmorgb-P4.26b 457 . 2 (¬ (𝜑 ∧ ¬ 𝜓) ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜓))
2 dnegeq-P4.10 418 . . 3 (¬ ¬ 𝜓𝜓)
32suborr-P3.43b.RC 349 . 2 ((¬ 𝜑 ∨ ¬ ¬ 𝜓) ↔ (¬ 𝜑𝜓))
41, 3bitrns-P3.33c.RC 303 1 (¬ (𝜑 ∧ ¬ 𝜓) ↔ (¬ 𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-bi 104  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  imasand-P4.33a  489
  Copyright terms: Public domain W3C validator