| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > imasand-P4.33a | |||
| Description: '→' in Terms of '∧'. |
| Ref | Expression |
|---|---|
| imasand-P4.33a | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasor-P4.32a 487 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | |
| 2 | lemma-L4.5 484 | . . 3 ⊢ (¬ (𝜑 ∧ ¬ 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | |
| 3 | 2 | bisym-P3.33b.RC 299 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| 4 | 1, 3 | bitrns-P3.33c.RC 303 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 ∧ wff-and 132 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |