PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imasand-P4.33a

Theorem imasand-P4.33a 489
Description: '' in Terms of ''.
Assertion
Ref Expression
imasand-P4.33a ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))

Proof of Theorem imasand-P4.33a
StepHypRef Expression
1 imasor-P4.32a 487 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
2 lemma-L4.5 484 . . 3 (¬ (𝜑 ∧ ¬ 𝜓) ↔ (¬ 𝜑𝜓))
32bisym-P3.33b.RC 299 . 2 ((¬ 𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
41, 3bitrns-P3.33c.RC 303 1 ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator