PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imasandint-P4.33b

Theorem imasandint-P4.33b 490
Description: One Direction of '' in Terms of ''.

Only this direction is deducible with intuitionist logic.

Assertion
Ref Expression
imasandint-P4.33b ((𝜑𝜓) → ¬ (𝜑 ∧ ¬ 𝜓))

Proof of Theorem imasandint-P4.33b
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . 4 (((𝜑𝜓) ∧ (𝜑 ∧ ¬ 𝜓)) → (𝜑 ∧ ¬ 𝜓))
21ndander-P3.9 174 . . 3 (((𝜑𝜓) ∧ (𝜑 ∧ ¬ 𝜓)) → 𝜑)
3 rcp-NDASM1of2 193 . . 3 (((𝜑𝜓) ∧ (𝜑 ∧ ¬ 𝜓)) → (𝜑𝜓))
42, 3ndime-P3.6 171 . 2 (((𝜑𝜓) ∧ (𝜑 ∧ ¬ 𝜓)) → 𝜓)
51ndandel-P3.8 173 . 2 (((𝜑𝜓) ∧ (𝜑 ∧ ¬ 𝜓)) → ¬ 𝜓)
64, 5rcp-NDNEGI2 219 1 ((𝜑𝜓) → ¬ (𝜑 ∧ ¬ 𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator