| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > imasandint-P4.33b | |||
| Description: One Direction of '→' in Terms of '∧'. †
Only this direction is deducible with intuitionist logic. |
| Ref | Expression |
|---|---|
| imasandint-P4.33b | ⊢ ((𝜑 → 𝜓) → ¬ (𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . . . 4 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 ∧ ¬ 𝜓)) → (𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | ndander-P3.9 174 | . . 3 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 ∧ ¬ 𝜓)) → 𝜑) |
| 3 | rcp-NDASM1of2 193 | . . 3 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 ∧ ¬ 𝜓)) → (𝜑 → 𝜓)) | |
| 4 | 2, 3 | ndime-P3.6 171 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 ∧ ¬ 𝜓)) → 𝜓) |
| 5 | 1 | ndandel-P3.8 173 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 ∧ ¬ 𝜓)) → ¬ 𝜓) |
| 6 | 4, 5 | rcp-NDNEGI2 219 | 1 ⊢ ((𝜑 → 𝜓) → ¬ (𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |