PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  biasandor-P4.34a

Theorem biasandor-P4.34a 491
Description: '' in Terms of '' and ''.
Assertion
Ref Expression
biasandor-P4.34a ((𝜑𝜓) ↔ ((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)))

Proof of Theorem biasandor-P4.34a
StepHypRef Expression
1 dfbi-P3.47 358 . . 3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
2 imasor-P4.32a 487 . . . 4 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
3 imasor-P4.32a 487 . . . 4 ((𝜓𝜑) ↔ (¬ 𝜓𝜑))
42, 3subandd-P3.42c.RC 344 . . 3 (((𝜑𝜓) ∧ (𝜓𝜑)) ↔ ((¬ 𝜑𝜓) ∧ (¬ 𝜓𝜑)))
5 andoveror-P4.27a 461 . . 3 (((¬ 𝜑𝜓) ∧ (¬ 𝜓𝜑)) ↔ (((¬ 𝜑𝜓) ∧ ¬ 𝜓) ∨ ((¬ 𝜑𝜓) ∧ 𝜑)))
6 andcomm-P3.35 314 . . . . 5 (((¬ 𝜑𝜓) ∧ ¬ 𝜓) ↔ (¬ 𝜓 ∧ (¬ 𝜑𝜓)))
7 andoveror-P4.27a 461 . . . . 5 ((¬ 𝜓 ∧ (¬ 𝜑𝜓)) ↔ ((¬ 𝜓 ∧ ¬ 𝜑) ∨ (¬ 𝜓𝜓)))
8 andcomm-P3.35 314 . . . . . 6 ((¬ 𝜓 ∧ ¬ 𝜑) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
9 andcomm-P3.35 314 . . . . . 6 ((¬ 𝜓𝜓) ↔ (𝜓 ∧ ¬ 𝜓))
108, 9subord-P3.43c.RC 351 . . . . 5 (((¬ 𝜓 ∧ ¬ 𝜑) ∨ (¬ 𝜓𝜓)) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜓)))
11 ncontra-P4.1 366 . . . . . 6 ¬ (𝜓 ∧ ¬ 𝜓)
1211idornthmr-P4.24b 449 . . . . 5 (((¬ 𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜓)) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
136, 7, 10, 12tbitrns-P4.17.RC 431 . . . 4 (((¬ 𝜑𝜓) ∧ ¬ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
14 andcomm-P3.35 314 . . . . 5 (((¬ 𝜑𝜓) ∧ 𝜑) ↔ (𝜑 ∧ (¬ 𝜑𝜓)))
15 andoveror-P4.27a 461 . . . . 5 ((𝜑 ∧ (¬ 𝜑𝜓)) ↔ ((𝜑 ∧ ¬ 𝜑) ∨ (𝜑𝜓)))
16 ncontra-P4.1 366 . . . . . 6 ¬ (𝜑 ∧ ¬ 𝜑)
1716idornthml-P4.24a 448 . . . . 5 (((𝜑 ∧ ¬ 𝜑) ∨ (𝜑𝜓)) ↔ (𝜑𝜓))
1814, 15, 17dbitrns-P4.16.RC 429 . . . 4 (((¬ 𝜑𝜓) ∧ 𝜑) ↔ (𝜑𝜓))
1913, 18subord-P3.43c.RC 351 . . 3 ((((¬ 𝜑𝜓) ∧ ¬ 𝜓) ∨ ((¬ 𝜑𝜓) ∧ 𝜑)) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) ∨ (𝜑𝜓)))
201, 4, 5, 19tbitrns-P4.17.RC 431 . 2 ((𝜑𝜓) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) ∨ (𝜑𝜓)))
21 orcomm-P3.37 319 . 2 (((¬ 𝜑 ∧ ¬ 𝜓) ∨ (𝜑𝜓)) ↔ ((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)))
2220, 21bitrns-P3.33c.RC 303 1 ((𝜑𝜓) ↔ ((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator