PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  biasandorint-P4.34b

Theorem biasandorint-P4.34b 492
Description: One direction of '' in Terms of '' and ''.

Only this direction is deducible with intuitionist logic.

Assertion
Ref Expression
biasandorint-P4.34b (((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) → (𝜑𝜓))

Proof of Theorem biasandorint-P4.34b
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . . 5 ((((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∧ (𝜑𝜓)) → (𝜑𝜓))
21ndandel-P3.8 173 . . . 4 ((((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∧ (𝜑𝜓)) → 𝜓)
32axL1-P3.21 252 . . 3 ((((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∧ (𝜑𝜓)) → (𝜑𝜓))
41ndander-P3.9 174 . . . 4 ((((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∧ (𝜑𝜓)) → 𝜑)
54axL1-P3.21 252 . . 3 ((((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∧ (𝜑𝜓)) → (𝜓𝜑))
63, 5ndbii-P3.13 178 . 2 ((((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∧ (𝜑𝜓)) → (𝜑𝜓))
7 rcp-NDASM2of2 194 . . . . 5 ((((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → (¬ 𝜑 ∧ ¬ 𝜓))
87ndander-P3.9 174 . . . 4 ((((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → ¬ 𝜑)
98impoe-P4.4a 377 . . 3 ((((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → (𝜑𝜓))
107ndandel-P3.8 173 . . . 4 ((((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → ¬ 𝜓)
1110impoe-P4.4a 377 . . 3 ((((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → (𝜓𝜑))
129, 11ndbii-P3.13 178 . 2 ((((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) ∧ (¬ 𝜑 ∧ ¬ 𝜓)) → (𝜑𝜓))
13 rcp-NDASM1of1 192 . 2 (((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) → ((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)))
146, 12, 13rcp-NDORE2 235 1 (((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator