PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  truthtblnegt-P4.35a

Theorem truthtblnegt-P4.35a 493
Description: ¬ T F.
Assertion
Ref Expression
truthtblnegt-P4.35a (¬ ⊤ ↔ ⊥)

Proof of Theorem truthtblnegt-P4.35a
StepHypRef Expression
1 dffalse-P3.49 365 . 2 (⊥ ↔ ¬ ⊤)
21bisym-P3.33b.RC 299 1 (¬ ⊤ ↔ ⊥)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-bi 104  wff-true 153  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator