| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > dffalse-P3.49 | |||
| Description: Re-derived Chapter 2 '⊥' definition. † |
| Ref | Expression |
|---|---|
| dffalse-P3.49 | ⊢ (⊥ ↔ ¬ ⊤) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffalse-P3.49-L1 363 | . 2 ⊢ (⊥ → ¬ ⊤) | |
| 2 | dffalse-P3.49-L2 364 | . 2 ⊢ (¬ ⊤ → ⊥) | |
| 3 | 1, 2 | rcp-NDBII0 239 | 1 ⊢ (⊥ ↔ ¬ ⊤) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 ↔ wff-bi 104 ⊤wff-true 153 ⊥wff-false 157 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-false-D2.5 158 df-rcp-AND3 161 |
| This theorem is referenced by: truthtblnegt-P4.35a 493 |
| Copyright terms: Public domain | W3C validator |