PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dffalse-P3.49

Theorem dffalse-P3.49 365
Description: Re-derived Chapter 2 '' definition.
Assertion
Ref Expression
dffalse-P3.49 (⊥ ↔ ¬ ⊤)

Proof of Theorem dffalse-P3.49
StepHypRef Expression
1 dffalse-P3.49-L1 363 . 2 (⊥ → ¬ ⊤)
2 dffalse-P3.49-L2 364 . 2 (¬ ⊤ → ⊥)
31, 2rcp-NDBII0 239 1 (⊥ ↔ ¬ ⊤)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-bi 104  wff-true 153  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161
This theorem is referenced by:  truthtblnegt-P4.35a  493
  Copyright terms: Public domain W3C validator