PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dffalse-P3.49-L1

Theorem dffalse-P3.49-L1 363
Description: Lemma for dffalse-P3.49 365.
Assertion
Ref Expression
dffalse-P3.49-L1 (⊥ → ¬ ⊤)

Proof of Theorem dffalse-P3.49-L1
StepHypRef Expression
1 false-P3.45 353 . . 3 ¬ ⊥
21ndtruei-P3.17 182 . 2 (⊤ → ¬ ⊥)
32trnsp-P3.31a.RC 280 1 (⊥ → ¬ ⊤)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-true 153  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161
This theorem is referenced by:  dffalse-P3.49  365
  Copyright terms: Public domain W3C validator