PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dmorgb-P4.26b

Theorem dmorgb-P4.26b 457
Description: De Morgan's Law B.
Assertion
Ref Expression
dmorgb-P4.26b (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))

Proof of Theorem dmorgb-P4.26b
StepHypRef Expression
1 dmorgbfwd-L4.3 454 . 2 (¬ (𝜑𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))
2 dmorgbrev-L4.4 455 . 2 ((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑𝜓))
31, 2rcp-NDBII0 239 1 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-bi 104  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  lemma-L4.5  484
  Copyright terms: Public domain W3C validator