| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > dmorgbrev-L4.4 | |||
| Description: De Morgan's Law B: Reverse Implication Lemma. † |
| Ref | Expression |
|---|---|
| dmorgbrev-L4.4 | ⊢ ((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . . 3 ⊢ (((¬ 𝜑 ∨ ¬ 𝜓) ∧ ¬ 𝜑) → ¬ 𝜑) | |
| 2 | 1 | nandir-P4.3b 375 | . 2 ⊢ (((¬ 𝜑 ∨ ¬ 𝜓) ∧ ¬ 𝜑) → ¬ (𝜑 ∧ 𝜓)) |
| 3 | rcp-NDASM2of2 194 | . . 3 ⊢ (((¬ 𝜑 ∨ ¬ 𝜓) ∧ ¬ 𝜓) → ¬ 𝜓) | |
| 4 | 3 | nandil-P4.3a 373 | . 2 ⊢ (((¬ 𝜑 ∨ ¬ 𝜓) ∧ ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
| 5 | rcp-NDASM1of1 192 | . 2 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)) | |
| 6 | 2, 4, 5 | rcp-NDORE2 235 | 1 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 |
| This theorem is referenced by: dmorgb-P4.26b 457 dmorgbint-P4.26c 458 |
| Copyright terms: Public domain | W3C validator |