PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dmorgbrev-L4.4

Theorem dmorgbrev-L4.4 455
Description: De Morgan's Law B: Reverse Implication Lemma.
Assertion
Ref Expression
dmorgbrev-L4.4 ((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑𝜓))

Proof of Theorem dmorgbrev-L4.4
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 (((¬ 𝜑 ∨ ¬ 𝜓) ∧ ¬ 𝜑) → ¬ 𝜑)
21nandir-P4.3b 375 . 2 (((¬ 𝜑 ∨ ¬ 𝜓) ∧ ¬ 𝜑) → ¬ (𝜑𝜓))
3 rcp-NDASM2of2 194 . . 3 (((¬ 𝜑 ∨ ¬ 𝜓) ∧ ¬ 𝜓) → ¬ 𝜓)
43nandil-P4.3a 373 . 2 (((¬ 𝜑 ∨ ¬ 𝜓) ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
5 rcp-NDASM1of1 192 . 2 ((¬ 𝜑 ∨ ¬ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))
62, 4, 5rcp-NDORE2 235 1 ((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  dmorgb-P4.26b  457  dmorgbint-P4.26c  458
  Copyright terms: Public domain W3C validator