| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nandil-P4.3a | |||
| Description: Negated Left '∧' Introduction. † |
| Ref | Expression |
|---|---|
| nandil-P4.3a.1 | ⊢ (𝛾 → ¬ 𝜑) |
| Ref | Expression |
|---|---|
| nandil-P4.3a | ⊢ (𝛾 → ¬ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . . 3 ⊢ ((𝛾 ∧ (𝜓 ∧ 𝜑)) → (𝜓 ∧ 𝜑)) | |
| 2 | 1 | ndandel-P3.8 173 | . 2 ⊢ ((𝛾 ∧ (𝜓 ∧ 𝜑)) → 𝜑) |
| 3 | nandil-P4.3a.1 | . . 3 ⊢ (𝛾 → ¬ 𝜑) | |
| 4 | 3 | rcp-NDIMP1add1 208 | . 2 ⊢ ((𝛾 ∧ (𝜓 ∧ 𝜑)) → ¬ 𝜑) |
| 5 | 2, 4 | rcp-NDNEGI2 219 | 1 ⊢ (𝛾 → ¬ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 |
| This theorem is referenced by: nandil-P4.3a.RC 374 dmorgbrev-L4.4 455 |
| Copyright terms: Public domain | W3C validator |