PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nandil-P4.3a

Theorem nandil-P4.3a 373
Description: Negated Left '' Introduction.
Hypothesis
Ref Expression
nandil-P4.3a.1 (𝛾 → ¬ 𝜑)
Assertion
Ref Expression
nandil-P4.3a (𝛾 → ¬ (𝜓𝜑))

Proof of Theorem nandil-P4.3a
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 ((𝛾 ∧ (𝜓𝜑)) → (𝜓𝜑))
21ndandel-P3.8 173 . 2 ((𝛾 ∧ (𝜓𝜑)) → 𝜑)
3 nandil-P4.3a.1 . . 3 (𝛾 → ¬ 𝜑)
43rcp-NDIMP1add1 208 . 2 ((𝛾 ∧ (𝜓𝜑)) → ¬ 𝜑)
52, 4rcp-NDNEGI2 219 1 (𝛾 → ¬ (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  nandil-P4.3a.RC  374  dmorgbrev-L4.4  455
  Copyright terms: Public domain W3C validator