PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nandir-P4.3b

Theorem nandir-P4.3b 375
Description: Negated Right '' Introduction.
Hypothesis
Ref Expression
nandir-P4.3b.1 (𝛾 → ¬ 𝜑)
Assertion
Ref Expression
nandir-P4.3b (𝛾 → ¬ (𝜑𝜓))

Proof of Theorem nandir-P4.3b
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 ((𝛾 ∧ (𝜑𝜓)) → (𝜑𝜓))
21ndander-P3.9 174 . 2 ((𝛾 ∧ (𝜑𝜓)) → 𝜑)
3 nandir-P4.3b.1 . . 3 (𝛾 → ¬ 𝜑)
43rcp-NDIMP1add1 208 . 2 ((𝛾 ∧ (𝜑𝜓)) → ¬ 𝜑)
52, 4rcp-NDNEGI2 219 1 (𝛾 → ¬ (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  nandir-P4.3b.RC  376  dmorgbrev-L4.4  455
  Copyright terms: Public domain W3C validator